C3-N1-C7	120.6 (3)	N1-C3-S1	113.5 (2)
C4-N1-C7	113.1 (3)	N1-C3-S2	124.5 (3)
C14-N2-C8	117.8 (2)	\$1-C3S2	122.0 (2)
01	126.7 (3)		

In (I), phenyl groups were refined as rigid hexagons. The morpholinyl rings are somewhat disordered and restraints had to be applied. The N—C and O—C distances were DFIXed (DFIX in SHELXL97; Sheldrick, 1997a) at 1.45 ± 0.01 Å, whereas the C—C distances were DFIXed at 1.54 ± 0.02 Å; additionally, $C22\cdots C24 = C47\cdots C49 = 2.51\pm0.02$ Å and $C23\cdots C25 = C48\cdots C50 = 2.37\pm0.02$ Å.

For both compounds, data collection: CAD-4/PC (Kretschmar, 1994). Cell refinement: CAD-4 Manual (Enraf-Nonius, 1988) for (I); CELDIM in CAD-4 Manual for (II). For both compounds, data reduction: XCAD4 (Harms, 1997); program(s) used to solve structures: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structures: SHELXL97; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Science Council for R&D, Malaysia (IRPA 09-02-03-0004 and IRPA 09-02-03-0371), for supporting this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1237). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1997). XCAD4. Program for the Lp Correction of Nonius CAD-4 Diffractometer Data. University of Marburg, Germany.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kretschmar, M. (1994). CAD-4/PC. Version 1.5c. PC Version of CAD-4 Software (Version 5.0). University of Tübingen, Germany.
- Kumar Das, V. G., Chen, W., Ng, S. W. & Mak, T. C. W. (1977). J. Organomet. Chem. 322, 33–47.
- Lo, K. M., Kumar Das, V. G. & Ng, S. W. (1999). Acta Cryst. C55. Submitted.
- Nachmias, G. (1952). Ann. Chim. (Paris), 7, 584-631.
- Ng, S. W. (1993). J. Crystallogr. Spectrosc. Res. 23, 73-75.
- Ng, S. W. (1996a). Acta Cryst. C52, 181-183.
- Ng, S. W. (1996b). Main Group Met. Chem. 19, 113-120.
- Ng, S. W. (1997a). Acta Cryst. C53, 779-781.
- Ng, S. W. (1997b). Z. Kristallogr. 212, 279-281.
- Ng, S. W., Chen, W. & Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59-61.
- Ng, S. W. & Kumar Das, V. G. (1991). J. Organomet. Chem. 409, 143–156.
- Ng, S. W. & Kumar Das, V. G. (1995a). Acta Cryst. C51, 2489-2491.
- Ng, S. W. & Kumar Das, V. G. (1995b). Main Group Met. Chem. 18, 309–314.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Pluijgers, C. W. & van der Kerk, G. J. M. (1961). *Recueil*, 90, 1089– 1100.
- Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Tickink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
- Tickink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-115.
- © 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Cryst. (1999). C55, 316-318

A dimeric copper(II) bis(4-chlorophenoxy)acetate adduct with dimethylformamide

Yoshiyuki Kani,^{*a*} Masanobu Tsuchimoto,^{*a*} Shigeru Ohba,^{*a*} Hideaki Matsushima,^{*b*} Masakazu Noguchi^{*b*} and Tadashi Tokii^{*b*}

^aDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ^bDepartment of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 1 September 1998; accepted 12 November 1998)

Abstract

The crystal structure of tetrakis[μ -bis(4-chlorophenoxy)acetato-O:O']bis[(dimethylformamide-O)copper(II)], [Cu(bpca)₂(dmf)]₂ [bpca is bis(4-chlorophenoxy)acetate, C₁₄H₉Cl₂O₄; dmf is dimethylformamide, C₃H₇NO], consists of a dinuclear Cu^{II} complex which has a typical cage structure, with a Cu···Cu distance of 2.685 (1) Å. The magnetic -2J value is 361 cm⁻¹ (H = -2JS₁.S₂).

Comment

The dinuclear title complex, (I), has a center of symmetry, and the conformations of the two independent bpca ligands [bpcaH is bis(4-chlorophenoxy)acetic acid] are different. The PhO—C—C(O)—O torsion angle is $55.1 (5)^{\circ}$ for one bpca ligand (O4—C2—C1—O2) and $-8.2 (5)^{\circ}$ for the other (O8—C16—C15—O5). The planes of the two phenoxy groups in each of the bpca moieties are almost perpendicular to each other, the dihedral angles being 85.8 (3) and $89.8 (3)^{\circ}$. However, the ring-to-ring dihedral angle of the phenoxy groups is 59.7° in the crystals of bpcaH (Smith & Kennard, 1981).

In this study, the magnetic susceptibility of the title complex was measured using the Faraday method over

316

the temperature range 80–300 K, and the -2J and g values were determined to be 361 cm^{-1} and 2.26, respectively, with a mole fraction of monomeric Cu¹¹ impurity of 2.4%. The -2J value is comparable with those of [Cu(pciba)₂(CH₃OH)]₂·2CH₃OH (pcibaH is 4-chlorophenoxyisobutyric acid, $C_{10}H_{11}ClO_3$; -2J =360 cm⁻¹; Kani et al., 1998) and [Cu(Ph₂MeCCOO)₂- $(EtOH)_{2} \cdot EtOH (-2J = 347 \text{ cm}^{-1}; \text{ Steward et al., 1996}).$ It is confirmed that there is a negligible influence of the antiferromagnetic interaction caused by the replacement of two phenyl groups with two phenoxy groups bonded at the α -carbon of the bridging carboxylate ions. In contrast, the copper(II) benzoylformates show abnormally strong spin-exchange interaction; -2J = 648 cm⁻¹ for [Cu(PhCOCOO)₂(py)]₂ (py is pyridine; Harada *et al.*, 1997).

Experimental

Bis(4-chlorophenoxy)acetic acid (626 mg, 2.0 mmol) and CuCO₃·Cu(OH)₂·H₂O (120 mg, 0.5 mmol) were suspended in

aqueous methanol (1:1, 40 ml). The solution was stirred for 4 h at room temperature and then filtered. The green residue was dissolved in dimethylformamide (20 ml) to yield a dark-green solution, from which green crystals were grown.

Crystal data

 $[Cu_2(C_{14}H_9Cl_2O_4)_4-$ Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ $(C_3H_7NO)_2$] Cell parameters from 25 $M_r = 1521.8$ Monoclinic reflections $\theta = 14.8 - 15.0^{\circ}$ $P2_1/n$ $\mu = 1.024 \text{ mm}^{-1}$ a = 10.115(3) Å T = 297 Kb = 10.757(4) Å c = 30.986 (4) ÅPrism 0.70 \times 0.60 \times 0.30 mm $\beta = 96.24 (2)^{\circ}$ $V = 3351(1) \text{ Å}^3$ Dark green Z = 2 $D_x = 1.508 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Rigaku AFC-5R diffractom-
eter6 ω scansHAbsorption correction:
 ψ scan (North *et al.*,
1968)H $T_{min} = 0.616, T_{max} = 0.736$ H10 267 measured reflectionsH9762 independent reflectionsH

Refinement

Refinement on F R = 0.065 wR(F) = 0.062 S = 1.795 6184 reflections 415 parameters H atoms not refined w = $1/[\sigma^2(F_o) + 0.00031|F_o|^2]$ 6184 reflections with $I > 1.5\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 30^{\circ}$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 15$ $l = -44 \rightarrow 44$ 3 standard reflections every 100 reflections intensity decay: none

 $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from *International Tables for Crystallography* (Vol. C)

Table 1. Selected geometric parameters (Å, °)

Cul···Cul ¹	2.685(1)	C13-C20	1.743 (4)
Cul—Ol	1.951 (3)	Cl4—C26	1.747 (5)
Cu1-O2	1.967 (3)	01C1	1.248 (5)
Cu1-O5	1.982(3)	O2—C1	1.238 (5)
Cu1—O6 ⁱ	1.971 (3)	O5—C15	1.232 (4)
Cu109	2.115 (3)	O6C15	1.251 (4)
Cl1—C6	1.726 (5)	O9—C29	1.253 (6)
Cl2—C12	1.738 (4)		
Ol-Cul-O2	166.6(1)	Cu11O6C15	121.5 (3)
O5-Cu1-O61	166.5 (1)	Cu1-09-C29	120.5 (3)
Cu1-01C1	121.1 (3)	O1C1O2	127.4 (4)
Cul ¹ —O2—C1	124.6 (3)	O5-C15-O6	127.7 (3)
Cu1-O5-C15	124.0(2)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

The positions of all the H atoms were calculated geometrically $[U(H) = 1.2U_{cu}(C)]$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation/Rigaku Corporation, 1998). Program(s) used to solve structure: TEXSAN. Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1053). Services for accessing these data are described at the back of the journal.

References

- Harada, A., Tsuchimoto, M., Ohba, S., Iwasawa, K. & Tokii, T. (1997). Acta Cryst. B53, 654-661.
- Kani, Y., Ohba, S., Matsushima, H. & Tokii, T. (1998). Acta Cryst. C54, 193-195.
- Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation/Rigaku Corporation (1998). TEX-SAN. Single Crystal Structure Analysis Software. Version 1.9. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, Tokyo, Japan.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Smith, G. & Kennard, H. L. (1981). Acta Cryst. B37, 1891-1895.
- Steward, O. W., Johnston, B. S., Chang, S.-C., Harada, A., Ohba, S., Tokii, T. & Kato, M. (1996). Bull. Chem. Soc. Jpn, 69, 3123–3137.

Acta Cryst. (1999). C55, 318-320

Dichloro[2,2'-(2,5-dithiahexamethylene)dipyridine-*N*,*N*',*S*,*S*']nickel(II)

Thangarasu Pandiyan,* Sylvain Bernès and Carmen Durán de Bazúa

Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, México DF, México. E-mail: pandiyan@servidor.unam.mx

(Received 15 May 1998; accepted 2 November 1998)

Abstract

The title complex, cis-[NiCl₂(C₁₄H₁₆N₂S₂)], has twofold crystallographic symmetry and the Ni atom has an octahedral coordination with two cis thioether S atoms, two *trans* pyridyl N atoms and two cis chloride ions. The main dimensions are Ni—N 2.1078 (16), Ni—S 2.4316 (7) and Ni—Cl 2.3855 (6) Å.

Comment

The identification of nickel complexes capable of generating methane from methyl-coenzyme M has proved to be difficult (Jaun & Pfaltz, 1988) and we recently reported an Ni^{II} compound which has coordinating tendencies towards the coenzyme (Pandiyan *et al.*, 1997*a*). Synthetic model studies of metalloenzymes have been used to illustrate the structural involvement on the biological functions (Stolzenberg & Zhang, 1997; Stolzenberg & Stershic, 1987; Murali *et al.*, 1994; Nishida & Takahashi, 1988; Pandiyan *et al.*, 1992, 1995, 1996, 1997*a,b*; Palaniandavar *et al.*, 1995; Drain *et al.*, 1988). The ligand 2,2'-(2,5-dithiahexamethylene)dipyridine (*L*) was synthesized and the spectroscopic biological studies on these complexes are under process in our laboratory.

In the structure of the title compound, (I), the Ni atom lies on a twofold axis of the *Pbcn* space group, while

the remaining atoms are in general positions (Fig. 1). The metal center is coordinated by two thioether S atoms, two pyridyl N atoms and two chloride ions. The coordination bond distances and the bond angles are presented in Table 1. The greatest deviation from an idealized octahedral geometry, 12.21 (9)°, is observed for the pyridyl N atoms with Ni1. Atoms S1, S1¹, N1 and N1ⁱ are almost coplanar, with a calculated maximum deviation of 0.052 Å for S1 and S1ⁱ [symmetry code (i): 1-x, y, $\frac{1}{2}-z$]. We can then consider the coordination environment as distorted octahedral with the apical positions occupied by the N atoms. The bite angle N1---Ni1—S1 $[81.78(5)^\circ]$ is due to the steric hindrance of the five-membered ring formed by Ni1, N1, C3, C2 and S1. On the other hand, the deviation from an idealized geometry [6.00 (3)°] observed for the angle Cl1-Ni1-Cl1¹ is rather due to the electronic repulsion of the Cl atoms in a *cis* configuration. Despite a different point

Fig. 1. The structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Acta Crystallographica Section C ISSN 0108-2701 © 1999

^{© 1999} International Union of Crystallography Printed in Great Britain – all rights reserved