C3-NI-C7

$$
120.6(3)
$$

C4-NI-C7
$\mathrm{C} 14-\mathrm{N} 2-\mathrm{C} 8$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O}_{2}$
In (I), phenyl groups were refined as rigid hexagons. The morpholinyl rings are somewhat disordered and restraints had to be applied. The $\mathrm{N}-\mathrm{C}$ and $\mathrm{O}-\mathrm{C}$ distances were DFIXed (DFIX in SHELXL97; Sheldrick, 1997a) at 1.45 ± 0.01 A., whereas the C-C distances were DFIXed at $1.54 \pm 0.02 \AA$; additionally, $\mathrm{C} 22 \cdots \mathrm{C} 24=\mathrm{C} 47 \cdots \mathrm{C} 49=2.51 \pm 0.02 \AA$ and $\mathrm{C} 23 \cdots \mathrm{C} 25=\mathrm{C} 48 \cdots \mathrm{C} 50=2.37 \pm 0.02 \AA$.

For both compounds, data collection: CAD-4/PC (Kretschmar, 1994). Cell refinement: CAD-4 Manual (Enraf-Nonius, 1988) for (I); CELDIM in CAD-4 Manual for (II). For both compounds, data reduction: XCAD4 (Harms, 1997); program(s) used to solve structures: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structures: SHELXL97; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Science Council for R \& D, Malaysia (IRPA 09-02-03-0004 and IRPA 09-02-030371), for supporting this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1237). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius. Delft, The Netherlands.
Harms, K. (1997). XCAD4. Program for the Lp Correction of Nonius CAD-4 Diffractometer Data. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kretschmar. M. (1994). CAD-4/PC. Version 1.5c. PC Version of CAD-4 Software (Version 5.0). University of Tübingen. Germany.
Kumar Das, V. G., Chen, W., Ng, S. W. \& Mak, T. C. W. (1977). J. Organomet. Chem. 322, 33-47.
Lo, K. M., Kumar Das, V. G. \& Ng. S. W. (1999). Acta Cryst. C55. Submitted.
Nachmias, G. (1952). Ann. Chim. (Paris), 7, 584-631.
Ng, S. W. (1993). J. Crustallogr. Spectrosc. Res. 23, 73-75.
Ng, S. W. (1996a). Acta Cryst. C52, 181-183.
Ng. S. W. (1996b). Main Group Met. Chem. 19, 113-120.
Ng, S. W. (1997a). Acta Cryst. C53, 779-781.
Ng, S. W. (1997b). Z. Kristallogr. 212. 279-281.
Ng, S. W., Chen, W. \& Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59-61.
Ng, S. W. \& Kumar Das, V. G. (1991). J. Organomet. Chem. 409. 14.3-156.

Ng. S. W. \& Kumar Das. V. G. (1995a). Acta Cryst. C51. 2489-2491.
Ng, S. W. \& Kumar Das, V. G. (1995b). Main Group Met. Chem. 18, 309-314.
North, A. C. T.. Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pluijgers, C. W. \& van der Kerk, G. J. M. (1961). Recueil, 90, 10891100.

Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen. Germany.
Tiekink. E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
Tickink. E. R. T. (1994). Trends Organomet. Chem. 1, 71-115.

Acta Cryst. (1999). C55, 316-318

A dimeric copper(II) bis(4-chlorophenoxy)acetate adduct with dimethylformamide

Yoshiyuki Kani, ${ }^{\text {a }}$ Masanobl Tsuchimoto, ${ }^{a}$ Shigeru Ohba, ${ }^{\text {a }}$ Hideaki Matsushima, ${ }^{b}$ Masakazu Noguchi ${ }^{b}$ and Tadashi Tokir ${ }^{b}$
"Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{h}$ Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan. E-mail: ohba@chem.keio.ac.jp

(Received I September 1998; accepted 12 November 1998)

Abstract

The crystal structure of tetrakis[μ-bis(4-chlorophenoxy)-acetato- $O: O^{\prime}$]bis [(dimethylformamide- O) copper(II)], $\left[\mathrm{Cu}(\mathrm{bpca})_{2}(\mathrm{dmf})\right]_{2}[\mathrm{bpca}$ is bis(4-chlorophenoxy)acetate, $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{O}_{4}$; dmf is dimethylformamide, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$], consists of a dinuclear $\mathrm{Cu}^{\text {II }}$ complex which has a typical cage structure, with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of $2.685(1) \AA$. The magnetic $-2 J$ value is $361 \mathrm{~cm}^{-1}\left(\mathrm{H}=-2 J S_{1} . S_{2}\right)$.

Comment

The dinuclear title complex, (I), has a center of symmetry, and the conformations of the two independent bpca ligands [bpcaH is bis(4-chlorophenoxy)acetic acid] are different. The $\mathrm{PhO}-\mathrm{C}-\mathrm{C}(\mathrm{O})-\mathrm{O}$ torsion angle is $55.1(5)^{\circ}$ for one bpea ligand $(\mathrm{O} 4-\mathrm{C} 2-\mathrm{Cl}-\mathrm{O} 2)$ and $-8.2(5)^{\circ}$ for the other (O8-C16-C15-O5). The planes of the two phenoxy groups in each of the bpca moieties are almost perpendicular to each other, the dihedral angles being $85.8(3)$ and $89.8(3)^{\circ}$. However, the ring-to-ring dihedral angle of the phenoxy groups is 59.7° in the crystals of bpcaH (Smith \& Kennard, 1981).

In this study, the magnetic susceptibility of the title complex was measured using the Faraday method over
the temperature range $80-300 \mathrm{~K}$, and the $-2 J$ and g values were determined to be $361 \mathrm{~cm}^{-1}$ and 2.26 , respectively, with a mole fraction of monomeric Cu^{11} impurity of 2.4%. The $-2 J$ value is comparable with those of $\left[\mathrm{Cu}(\text { pciba })_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$ (pcibaH is 4-chlorophenoxyisobutyric acid, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} ;-2 \mathrm{~J}=$ $360 \mathrm{~cm}^{-1}$; Kani et al., 1998) and $\left[\mathrm{Cu}\left(\mathrm{Ph}_{2} \mathrm{MeCCOO}\right)_{2}-\right.$ $(\mathrm{EtOH})]_{2} \cdot \mathrm{EtOH}\left(-2 J=347 \mathrm{~cm}^{-1}\right.$; Steward et al., 1996). It is confirmed that there is a negligible influence of the antiferromagnetic interaction caused by the replacement of two phenyl groups with two phenoxy groups bonded at the α-carbon of the bridging carboxylate ions. In contrast, the copper(II) benzoylformates show abnormally strong spin-exchange interaction; $-2 J=648 \mathrm{~cm}{ }^{1}$ for $\left[\mathrm{Cu}(\mathrm{PhCOCOO})_{2}(\mathrm{py})\right]_{2}$ (py is pyridine; Harada et al., 1997).

Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level. H atoms are represented by circles of arbitrary size.

Experimental

Bis(4-chlorophenoxy)acetic acid ($626 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(120 \mathrm{mg}, 0.5 \mathrm{mmol})$ were suspended in
aqueous methanol ($1: 1,40 \mathrm{ml}$). The solution was stirred for 4 h at room temperature and then filtered. The green residue was dissolved in dimethylformamide (20 ml) to yield a dark-green solution, from which green crystals were grown.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{O}_{4}\right)_{4}-\right.$
$\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=1521.8$
Monoclinic
$P 2_{1} / n$
$a=10.115(3) \AA$
$b=10.757(4) \AA$
$c=30.986$ (4) \AA
$\beta=96.24(2)^{\circ}$ 。
$V=3351(1) \AA^{3}$
$Z=2$
$D_{s}=1.508 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5R diffractom-
eter
ω scans
Absorption correction:
ψ scan (North et al.,
1968)
$T_{\text {min }}=0.616, T_{\text {max }}=0.736$
10267 measured reflections 9762 independent reflections

Refinement

Refinement on F
$R=0.065$
$w R(F)=0.062$
$S=1.795$
6184 reflections
415 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right.$
$\left.+0.00031\left|F_{o}\right|^{2}\right]$
Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cul} \cdot \mathrm{Cul}{ }^{1}$	2.685 (1)	$\mathrm{Cl} 3-\mathrm{C} 20$	1.74 .3 (4)
Cul-()l	1.951 (3)	Cl4-C26	1.747 (5)
Cul-O2'	1.967 (.3)	()]---Cl	$1.248(5)$
Cul-OS	1.982 (3)	$\mathrm{O} 2-\mathrm{Cl}$	1.238 (5)
Cul-()6	1.971 (3)	O5-C15	1.232 (4)
Cul--O9	2.115 (3)	O6-C15	1.251 (4)
Cll-C6	1.726 (5)	()9-C29	1.253 (6)
Cl2-C12	$1.738(4)$		
()1-Cul-O2'	166.6 (1)	Cul'-O6-C.15	121.5 (3)
OS-Cul-()6	166.5 (1)	Cul-O9-C29	120.5 (3)
Cul-O1--Cl	121.1 (3)	$\mathrm{Ol}-\mathrm{Cl}_{-\mathrm{O}}$	127.4 (4)
Cul-O2-Cl	124.6 (3)	()5-C15-06	127.7(3)
Cul-O5-C.15	124.0(2)		

Symmetry code: (i) $1-x, 1-y, 1-z$.
The positions of all the H atoms were calculated geometrically $\left[U(\mathrm{H})=1.2 U_{\mathrm{cq}}(\mathrm{C})\right]$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction:

TEXSAN (Molecular Structure Corporation/Rigaku Corporation, 1998). Program(s) used to solve structure: TEXSAN. Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1053). Services for accessing these data are described at the back of the journal.

References

Harada, A., Tsuchimoto, M., Ohba, S., Iwasawa, K. \& Tokii, T. (1997). Acta Cryst. B53, 654-661.
Kani, Y., Ohba, S.. Matsushima, H. \& Tokii, T. (1998). Acta Cryst. C54, 193-195.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation/Rigaku Corporation (1998). TEXSAN. Single Crystal Siructure Analysis Sofiware. Version 1.9. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, Tokyo, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Smith, G. \& Kennard, H. L. (1981). Acta Cryst. B37, 1891-1895.
Steward, O. W., Johnston, B. S., Chang, S.-C., Harada, A., Ohba, S., Tokii, T. \& Kato, M. (1996). Bull. Chem. Soc. Jpn, 69, 3123-3137.

Acta Cryst. (1999). C55, 318-320

Dichloro[2,2'-(2,5-dithiahexamethylene)di-pyridine- $\left.N, N^{\prime}, S, S^{\prime}\right]$ nickel(II)

Thangarasu Pandiyan,* Sylvain Bernès and Carmen Durán de Bazúa

Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, México DF, México. E-mail: pandiyan@servidor.unam.mx
(Received 15 May 1998; accepted 2 November 1998)

Abstract

The title complex, cis-[$\left.\mathrm{NiCl}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)\right]$, has twofold crystallographic symmetry and the Ni atom has an octahedral coordination with two cis thioether S atoms, two trans pyridyl N atoms and two cis chloride ions. The main dimensions are $\mathrm{Ni}-\mathrm{N} 2.1078$ (16), $\mathrm{Ni}-\mathrm{S}$ 2.4316 (7) and $\mathrm{Ni}-\mathrm{Cl} 2.3855$ (6) A.

\section*{Comment}

The identification of nickel complexes capable of generating methane from methyl-coenzyme M has proved to be difficult (Jaun \& Pfaltz, 1988) and we recently

reported an $\mathrm{Ni}^{\mathrm{II}}$ compound which has coordinating tendencies towards the coenzyme (Pandiyan et al., 1997a). Synthetic model studies of metalloenzymes have been used to illustrate the structural involvement on the biological functions (Stolzenberg \& Zhang, 1997; Stolzenberg \& Stershic, 1987; Murali et al., 1994; Nishida \& Takahashi, 1988; Pandiyan et al., 1992, 1995, 1996, 1997a,b; Palaniandavar et al., 1995; Drain et al., 1988). The ligand $2,2^{\prime}$-(2,5-dithiahexamethylene)dipyridine (L) was synthesized and the spectroscopic biological studies on these complexes are under process in our laboratory.

In the structure of the title compound, (I), the Ni atom lies on a twofold axis of the Pbcn space group, while

(I)
the remaining atoms are in general positions (Fig. 1). The metal center is coordinated by two thioether S atoms, two pyridyl N atoms and two chloride ions. The coordination bond distances and the bond angles are presented in Table 1. The greatest deviation from an idealized octahedral geometry, $12.21(9)^{\circ}$, is observed for the pyridyl N atoms with Nil. Atoms S1, S1 ${ }^{\mathrm{i}}$, N1 and Nl^{i} are almost coplanar, with a calculated maximum deviation of $0.052 \AA$ for S 1 and Si^{i} [symmetry code (i): $\left.1-x, y, \frac{1}{2}-z\right]$. We can then consider the coordination environment as distorted octahedral with the apical positions occupied by the N atoms. The bite angle $\mathrm{N} 1-$ Nil-S1 [81.78(5) ${ }^{\circ}$] is due to the steric hindrance of the five-membered ring formed by Ni1, N1, C3, C2 and S . On the other hand, the deviation from an idealized geometry [6.00(3) ${ }^{\circ}$] observed for the angle $\mathrm{Cl1}-\mathrm{Ni} 1-$ Cll^{i} is rather due to the electronic repulsion of the Cl atoms in a cis configuration. Despite a different point

Fig. I. The structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

